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Scaling invariance of the homoclinic tangle
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The structure of the homoclinic tangle of 11
2 degrees of freedom Hamiltonian systems in the neighborhood

of the saddle point is invariant under discrete rescaling of the system’s parameters. The rescaling constant is
derived from the separatrix map and the Melnikov formula. Invariant manifolds for the periodically modulated
Duffing oscillator are computed numerically to confirm this property. The scaling is related to the recently
found invariance of the separatrix map under a discrete renormalization group. A possibility to extend the
scaling invariance to different systems is demonstrated. The equivalency conditions under which two systems
have the similarity of their chaotic layer structure near the saddle are derived. A numerical example shows a
Duffing oscillator and a pendulum~acted on by different periodic perturbations! with the same structure of the
tangle.
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I. INTRODUCTION

Hamiltonian systems with low number of degrees of fre
dom arise in a variety of physical applications, such as
vection of passive particles in incompressible flows@1–7#,
geometry of magnetic field lines in tokamaks@8,9#, electron
motion in a lattice@10,11#, celestial mechanics@12,13#, etc. A
generic property of such systems is the coexistence of
otic and regular trajectories. The partition of the phase sp
into regular and chaotic components is nontrivial, and le
to peculiar statistical properties of the trajectories in the c
otic component@14–18#. For example, the variance of th
particle ensemble grows superdiffusively,s2;tm, m.1, the
distribution of the Poincare´ recurrences is non-Poissonia
etc. The mechanism responsible for the anomalous stati
is the stickiness of the trajectories to the boundaries betw
the chaotic and regular components. The boundary zon
stratified with partial barriers~cantori! and has an infinite se
of islands of regular motion. Due to its~multi!fractal struc-
ture, the boundary zone acts as a particle trap: the distr
tion of exit times has long algebraic tails. The connect
between the structure of the phase space and the tran
properties was investigated theoretically and numerically
number of works@3,15–17,19–25#. To achieve a comprehen
sive description of particle kinetics in the chaotic layer
knowledge of fractal properties of the boundary zone is n
essary.

The transition from the regular, integrable dynamics
chaotic dynamics was studied extensively in the framew

of 1 1
2 degrees of freedom near-integrable systems@8,26,27#.

In such systems the Hamiltonian is given by a sum o
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time-independent partH0 and a small time-periodic pertur
bation: H5H0(x,y)1eV(x,y,t), e!1. For eÞ0 and ge-
neric V, the separatrices of the unperturbed system are
placed by chaotic layers. Ase→0 the width of the layer
decreases, but it retains the full complexity of its structu
The width of the chaotic layer has different expressions
pending one and the frequency of perturbation, and it can
evaluated using the separatrix map@8#. There were different
improvements and generalizations of the separatrix map
Refs.@28,29#.

It was found in Ref.@30# that the structure of the laye
near the saddle-point changes periodically with lne. More
specifically, the phase portraits in the saddle-point neighb
hood are invariant under simultaneous rescaling of the
nonical coordinates and the perturbation amplitude accord
to e→le, (x,p)→l1/2(x,p), wherel is a constant depend
ing on H0 and V. The origin of this property was traced t
the renormalization invariance of the corresponding sep
trix map. This rescaling was found in a variety of system
@30–34# and its manifestation in a lne-periodic oscillations
of transport characteristics was observed numeric
@33,34#.

In this work, we further investigate the scaling invarian
of the chaotic layer originating from the renormalization i
variance of the separatrix map. Our results include the
mulation of the scaling property in terms of the system
parameters and the effect of the rescaling on the invar
manifolds attendant to the saddle. We show that a simila
between the chaotic layer structures extends to systems
different H0 and/orV, i.e., the layer structure possesses c
tain universality. We derive the equivalency conditions th
have to be satisfied in order for the two systems to have
same layer structure near the saddle. As an example,
demonstrate that for any~periodically perturbed! Duffing os-
cillator there is a~periodically perturbed! pendulum with the
same layer structure.

The paper is organized as follows. In Sec. II we show h
©2002 The American Physical Society12-1
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the formulation of the rescaling property in terms of system
parameters follows naturally from the expression for
Melnikov function. The Duffing oscillator is taken as an e
ample; the rescaling of the homoclinic tangle is confirmed
numerical construction of the invariant manifolds. In Sec.
the connection to the corresponding invariance of the se
ratrix map is shown. In Sec. IV the case of two differe
systems is addressed.

II. MODULATED DUFFING OSCILLATOR

Consider a Duffing oscillator with periodically modulate
frequency

He~p,x,t !5p2/22x2/2@11e cos~nt1f0!#1x4/4a2,
~1!

wheree and n are the amplitude and the frequency of t
modulation, anda is the parameter controlling the size of th
unperturbed double-well potential. This system has an e
librium saddle-point at zero:xs50, ps50. Stable and un-
stable manifoldsWs and Wu, associated with it are define
as sets of points with trajectories asymptotic to the saddl
forward and backward time, respectively@35#:

Ws[$~x,p,t !ux~ t1 ;x,p,t !→0 as t1→`%,

Wu[$~x,p,t !ux~ t1 ;x,p,t !→0 as t1→2`%, ~2!

wherex(t1 ;x,p,t) is a solution of the equations of motio
with the initial conditionx(t)5x, p(t)5p.

Whene50, the energyE[H0(p,x) is conserved, and the
stable and unstable manifolds coincide along the separ
curveH0(p,x)50. There are two families of aperiodic sep
ratrix solutions:

xs
s~ t;t!5s

A2a

cosh~ t2t!
, ~3!

ps
s~ t;t!52s

A2a sinh~ t2t!

cosh2~ t2t!
, ~4!

wheres is 11 for the right branch and21 for the left one.
The solutions are parametrized byt, the time of the center o
the pulse~maximum of uxsu). The period of near separatri
trajectories~with E!1) diverges asE→0 as

T~E!5 ln
16a2

uEu
, ~5!

WheneÞ0, Ws andWu intersect transversely and form
homoclinic tangle. For smalle the distance between them
can be estimated by Melnikov formula@26,35#:

d~t!'eM ~t!/u¹H0u, ~6!

where the Melnikov integral is given by:

M ~t!5E
2`

2`

ps~ t;t!xs~ t;t!cos~nt1f0!dt, ~7!
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M ~t!5Md sin~nt1f0!, Md5
pn2a2

sinh~pn/2!
. ~8!

Zeros of the Melnikov function

tn5pn/n, xn56A2a/cosh~pn/n!, nPZ ~9!

correspond to the primary intersection points ofWs andWu.
The primary intersection points accumulate near

saddle, whereunu is large and

xn'pn'6A2ae2punu/n. ~10!

The change of the Hamiltonian parametera→la changes
the location of the primary intersections in the vicinity of th
saddle unless we take

l5la
m5e2pm/n, m561,62, . . . ~11!

when the intersections are mapped to each other:

xn→xn1m ~n.0!, xn→xn2m ~n,0!. ~12!

In order to preserve the structure of the homoclinic tan
two other conditions have to be satisfied. First, the area
the lobes@the regions bounded by the pieces onWs andWu

between two adjacent primary intersections, see, e.g.,
@35## has to stay the same after the rescaling, and second
manifold orientation at the intersection has to be preserv
All lobes have equal area

AL5UeE
tn

tn11
M ~t!dtU5eMd /n, ~13!

whereMd is defined in Eq.~8!, and to keep it constant th
perturbation amplitude has to be rescaled according toueu
→la

22mueu. To preserve the manifold orientation, the sign
e has to be changed whenm is odd, which leads to the
following scaling:

a→la
ma, e→~21!mla

22me. ~14!

Note, that changing the sign ofe is equivalent to the shift of
the perturbation phase byp, f0→f01p.

It is not evident yet whether the secondary and high
order intersections will be mapped to each other by
above scaling. In the following section we will show that th
separatrix map that approximates the chaotic layer dynam
for smalle is invariant under the above rescaling, and, the
fore, the structure of the homoclinic tangle near the sad
should be preserved.

Numerical examples corroborate this result. Left colum
in Fig. 1 shows the manifolds for the Duffing oscillator~1!
for n53p/2, e5e050.1, a5a051. The rescaling constan
for this frequency isla5exp(p/n)51.947 . . . . According
to Eqs.~11!, and ~14!, the same system withe152la

22e0

520.026 . . . anda15laa051.947 . . . will have the same
structure of the manifolds. The right column of Fig. 1 sho
the manifolds for these values ofa and e. The structure of
the tangles around the saddle is remarkably similar~bottom
2-2
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FIG. 1. Top row~pictures at different scale!: Invariant manifolds for Duffing oscillator~1! with n53/2p. Left column: e050.1, a0

51; right column:e150.027,a151.947. Bottom row~pictures at the same scale!: Zoom of the saddle-point neighborhood.
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row of Fig. 1!. The difference between the two pictures
due to the relatively large perturbation amplitudes used:
width of the chaotic component near the saddle is of
same order of magnitude as the characteristic size of
potential wella. Although it is hard to discern it from the to
row of Fig. 1, it is clear from Eq.~12! that the effect of the
rescaling on the global structure of the tangle is the app
ance of an extra primary intersection~and, therefore, an extr
lobe!.

The manifolds were computed via the straddling alg
rithm @36#, the integration was carried out with a fifth-ord
symplectic scheme@37#, with the time stepDt50.001 and
spatial resolution of the manifoldsDx50.01. The choice of a
high-precision integration scheme in combination with
very short time step was necessitated by a sensitive de
dence of the near-saddle dynamics on numerical errors.

III. SEPARATRIX MAP AND THE ENERGY
SCALE CONSTANT

A generic near-integrable 112 degrees of freedom Hamil
tonian system
04621
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e
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ẋ5
]He

]y
, ẏ52

]He

]x
~15!

is defined by a Hamiltonian

He~x,y,t !5H0~x,y!1eV~x,y,t ! ~16!

that is given by the sum of an integrable partH0(x,y) and a
time-periodic perturbation

V~x,y,t12p/n!5V~x,y,t ! ~17!

with frequencyn and a small amplitudee!1.
We assume that the unperturbed HamiltonianH0 has a

saddle point (xs ,ys). A coordinate system can always b
chosen in such a way that the saddle is at the origin,xs
5ys50, andH0 has the first terms of Taylor series expa
sion in the form

H0~x,y!5Es1y2/22x2/21o~x2,y2,xy!. ~18!

In the absence of perturbation (e50) the energy E
[H0(x,y) is a constant of motion, and the trajectories lie
the level curvesH0(x,y)5const.
2-3
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The separatrix is the level curve passing through
saddle point. It self-intersects at the saddle, where it is
gent to the linesx56y. In the following, we assume tha
there is no other fixed points on the separatrix. In that cas
consists of two branches, each branch corresponds to a
ily of aperiodic homoclinic solutions@xs

s(t2t),ys
s(t2t)#.

The sign variable s561 differentiates between th
branches. These solutions have a solitonlike shape (t corre-
sponds to the soliton’s center!, their asymptotics follows
from Eq. ~18!:

xs
s~ t !'s exp~6t !, ys

s~ t !'6s exp~6t !, t→7`.

~19!

The construction of the separatrix map is based on gen
properties of trajectories withuE2Esu!1. Such trajectory
looks like a periodic sequence of localized pulses, separ
by relatively long intervals when it stays in the neighborho
of the saddle. Depending on the sign ofE2Es , a trajectory
may pass the saddle-point neighborhood once per perio
which case we will refer to it as a single passage traject
or twice per period, in which case we will call it a doub
passage one. The structure ofH0 determines which sign o
E2Es corresponds to single passage trajectories, and w
to double passage ones. In both cases the interval betw
the pulses diverges logarithmically whenE→Es :

T' ln~B/uE2Esu!, E→Es , ~20!

where B is the energy scale constant. It is defined by the
length of the separatrix loop and therefore depends on
specific form of the potential. Here we restrict our consid
ation to the symmetric case, whereB is the same for both
separatrix branches, however, the results can be genera
to the case whenB depends ons. The shape of each pulse
close to that of the separatrix solitons@xs(t2t),ys(t2t)#.
A double passage trajectory consists of a series of alterna
pulses withs561, a single passage one has pulses of
same shape.

When the perturbation is present, the energy is not c
served anymore, and the near-separatrix motion beco
chaotic. The trajectories still look like sequences of puls
but the interval between them is not constant and there is
particular order in alternation between different branches,
cause the energy can change sign during the motion.
sequence of pulses can be described by three discrete
ables:tn : time of the middle of thenth pulse,En : energy at
the point of the nearest approach to the saddle betweentn21
andtn , andsn : sign variable indicating which branch of th
separatrix was followed by thenth pulse. Figure 2 illustrates
the definition of these variables.

A map, approximating the dynamics of (t,E,s) was in-
troduced in Ref.@8# @see, also, Refs.@27,38,39## and is
known as theseparatrix map. It provides an efficient tool for
the study of different properties of the near-separatrix
namics: the width of the chaotic layer, the structure of re
nant islands inside it, transport phenomena, etc.@40–42#.

To construct the separatrix map, we need the equation
the evolution of the energy:
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Ė5e@H0 ,V#, ~21!

where@ ,# denotes the usual Poisson bracket. The chang
the energy during one pulse is then

DE~tn ,sn!5eE
tn2T(En)/2

tn1T(En)/2

@H0 ,V#dt, ~22!

wherex(t) and y(t) under the integral are taken along th
trajectory. To evaluate the integral two approximations
made: x(t) and y(t) are replaced byxn

s(t2tn) and yn
s(t

2tn), and integration limits are extended to6` @see Refs.
@38,43# for detail#. Then

DE~tn ,sn!'eE
2`

2`

@H0 ,V#dt5eM ~tn ,sn!, ~23!

whereM (tn ,sn) is the Melnikov integral, which does no
depend onEn , and is periodic intn :

M ~tn ,sn!5M ~tn12p/n,sn!. ~24!

The energy between the pulses is almost constant
equal to the midway energyEn11, therefore, the interva
between the pulses can be approximated using Eq.~20! as

tn112tn5 ln~B/uEn112Esu!. ~25!

The equation forsn depends on which sign of theE2Es
corresponds to double passage trajectories. The trajec
switches separatrix branches at the saddle,sn1152sn , if
En11 corresponds to a double passage trajectory, and s
on the same branch otherwise. Introducing the sgn cons
s511 for the case when double passage trajectories h
E,Es ands521 otherwise, we obtain

sn115ssn sgn~En112Es!. ~26!

It is convenient to introduce new variables: an energy m
sured from the separatrix and the perturbation phase at
center of thenth pulse:

hn[En2Es , fn[ntn , mod 2p. ~27!

FIG. 2. Definition of the separatrix map variables.
2-4
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Now the separatrix map can be written as:

hn115hn1eM ~fn ,sn!,

fn115fn1n ln B/uhn11u, mod 2p,

sn115ssn sgn~hn11!. ~28!

If there is a parametera in the Hamiltonian, i.e.,H0
5H0(x,p;a), V5V(x,p,t;a), then the energy scale con
stant B and the Melnikov integralM will depend on this
parameter. The invariance of the separatrix map with res
to the parameter rescaling can be formulated as follows.

Any change of Hamiltonian parametersa→a8 resulting
in the rescaling ofB according to

B~a!→lmB~a8!, m561,62, . . . ~29!

together with the rescaling of the perturbation amplitude

e→eM ~a8!/M ~a! ~30!

leaves the separatrix map~28! invariant, if the rescaling con
stant is an integer power of

l5exp~2p/n!. ~31!

Indeed, Eq.~30! preserves the producteM , so the first equa-
tion does not change, while Eq.~29! results in the appear
ance of an additional termnm ln l in the second equation
With l chosen according to Eq.~31!, this term is zero,
mod 2p, therefore the second equation is also preserv
The third equation is unaffected by Eqs.~29! and ~30!. The
above invariance of the separatrix map is similar to the
variance with respect to the rescaling ofe andh by the same
constantl @given by Eq.~31!#, which was obtained in Ref
@30#.

The scaling~14! derived in Sec. II coincides with Eqs
~29! and ~30! ~with l5la

2 due to B;a2) except for the
factor (21)m in the formula for the perturbation amplitud
e. This difference is due to the nature of the separatrix m
variables (hn ,tn), which are taken at different points i
time. The phase variable in Eq.~28! can be shifted in order to
synchronize the two variables. The resulting equatio
known as the shifted separatrix map@30#, require the pertur-
bation phase shiftmp in order to stay invariant under th
rescaling@see, Refs.@30,32# for detail#. Such shift is equiva-
lent to the factor (21)m in the rescaling of the amplitude
i.e., the scaling Eq.~14! derived for the homoclinic coincide
with the scaling for the corresponding shifted separatrix m

IV. SCALING UNIVERSALITY

In this section, we will formulate the universality proper
of chaotic layer structure in near-integrable Hamiltonian s

tems with 11
2 degrees of freedom. Our main conjecture

that if separatrix maps, approximating two different syste
are equivalent~i.e., can be made the same by an appropr
change of variables!, then the phase portraits of these sy
tems are similar~i.e., have the same topology and can
obtained from each other by the rescaling of the coordina!
04621
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in the neighborhood of the saddles. We will list the con
tions for this equivalency, and support it with numerical e
amples.

Consider two near-integrable Hamiltonian systems of
following form:

H ( i )5H0
( i )~x,y!1e i f i~x,y!sinn i t, i 51,2. ~32!

We assume, that bothH0
(1) and H0

(2) have saddle points a
zero, and their Taylor expansions at the saddle are

H0
( i )5Es

( i )1y2/22g i
2x2/21o~x2,y2,xy!, i 51,2.

~33!

It follows that the interval between two velocity pulses
near separatrix trajectories diverges logarithmically in b
systems as

Ti'g i
21 ln

Bi

uE2Es
( i )u

, i 51,2 ~34!

provided there is no other saddles on the separatrices.
energy scale constantsBi depend onH0

( i ) but not onV( i ) ~see,
Sec. III!. Separatrix map for each system can be written
( i 51,2):

En11
( i ) 5En

( i )1e iM i~sn
( i )!sinfn

( i ) ,

fn11
( i ) 5fn

( i )1~n i /g i !ln~Bi /uEn11
( i ) 2Esu!, mod 2p,

sn11
( i ) 5sisn

( i ) sgn~En11
( i ) 2Es

( i )!. ~35!

Sign constantsi is si51 if the double passage trajectorie
haveE,Es , andsi521 otherwise.

Let us rescale the energy according to

h( i )5si~E( i )2Es
( i )!/Bi . ~36!

The maps~35! can be rewritten as

hn11
( i ) 5hn

( i )1@sie iM i~sn
( i )!/Bi #sinfn

( i ) ,

fn11
( i ) 5fn

( i )2~n i /g i !ln uhn11
( i ) u, mod 2p,

sn11
( i ) 5sn

( i ) sgnhn11
( i ) . ~37!

It follows that the separatrix maps for the two systems
equivalent if

n1 /g15n2 /g2 ,

M1~11!/M1~21!5M2~11!/M2~21!,

s1e1M1 /B15s2e2M2 /B2 . ~38!

The first condition means that the perturbation frequen
should be the same when measured in terms of the co
sponding saddle-point eigenvalueg i . The second condition
requires the ratio of Melnikov integrals for two separatr
branches to be the same for both systems, i.e., the pertu
2-5
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FIG. 3. Invariant manifolds for
Duffing oscillator ~41!, ep5
20.0125 . . . , nd54 ~a! Over-
view; ~b! zoom of the saddle-poin
neighborhood.
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tions f i(x,y) should have the same symmetry. The third co
dition relates the perturbation amplitudes, it can always
satisfied by setting

e25e1

s1M1B2

s2M2B1
. ~39!

This equivalency of the separatrix maps is reflected in
structure of the homoclinic tangle: under the conditions~38!
the phase portraits ofH (1) andH (2) are similar to each othe
in the saddle-point neighborhood. The scaling factor follo
from Eq. ~36!:

x1→~B2 /B1!1/2x2 , y1→~B2 /B1!1/2y2 . ~40!

To verify the above universality, we numerically constru
homoclinic tangles for two different systems, satisfying E
~38!. The first system is a Duffing oscillator with periodical
modulated nonlinearity

He
d~p,x,t !5p2/22x2/21x4/4a2~11ed cosndt !, ~41!

whereed andnd are the amplitude and the frequency of t
modulation, anda is the parameter of the unperturbed pote
tial. The second system is a parametrically perturbed pen
lum with the Hamiltonian

He~p,x,t !5p2/21~11ep cosnpt !cosx, ~42!

wherenp and ep are the perturbation frequency and amp
tude.
04621
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The asymptotics of the period of near-separatrix trajec
ries for Duffing oscillator is given by Eq.~5!, which gives
Bd516a2. For the pendulum

Tp~E!' ln 32/uE2Esu ~43!

andBp532.
The Melnikov integral for Eq.~41! is

M ~t!5Md sinnt, Md52
pn2~n214!a2

6 sinh~pn/2!
~44!

and for the pendulum

M ~t!5M p sinnt, M p5
2pn2

sinh~pn/2!
. ~45!

Note that the Duffing oscillator hassd51 ~phase space is a
plane!, but the pendulum hassp521 ~phase space is a cyl
inder!.

The symmetry of the perturbation is the same in bo
systems:M (11)5M (21), and the second condition in Eq
~38! is satisfied automatically. To satisfy the other two, w
set

nd5np , ed5ep

sdM pBd

spMdBp
5ep6a2/~n214!. ~46!

We have numerically computed the stable and unsta
invariant manifoldsWs andWu attendant to the saddle poin
at the origin for both systems. The results are presente
Figs. 3 and 4. We have used the following parameter val
s

FIG. 4. Invariant manifolds of
the pendulum ~42! with the
equivalent parameters@see, Eq.
~46!#: np54, ep520.0416 . . .
~a! Overview; ~b! zoom of the
saddle-point neighborhood. Axe
are scaled according to Eq.~40!
with respect to Fig. 3~b!.
2-6
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SCALING INVARIANCE OF THE HOMOCLINIC TANGLE PHYSICAL REVIEW E66, 046212 ~2002!
for the pendulum:ep520.0416 . . . , np54. Corresponding
values for the Duffing oscillator follow from Eq.~46!: ed5
20.0125 . . . , nd54. Despite different forms ofH0 andV,
and the difference in global topology of the phase space,
central parts of the two homoclinic tangles practically co
cide when the axes are scaled according to Eq.~40!.

V. CONCLUSION

Understanding the structure of the chaotic layer and
dependence on the parameters of the Hamiltonian is a ke
many problems in physics, including cross-stream mixing
geophysical flows, orbital and spin-orbital resonances in
lestial mechanics, destruction of magnetic surfaces in to
maks, and many others. The width and the rough location
the layer are considered as the most important layer cha
teristics, but when the statistical properties of the parti
motion are sought, the knowledge of its fine structure~the
multifractal boundary! becomes essential. The connection
the anomalous particle statistics provides a motivation
studying the layer structure in detail.

Homoclinic tangle, formed by the broken separatrix, is
d

i.
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-
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to

n
e-
a-
of
c-

e

r

backbone of the chaotic layer, its geometry determines tra
port properties of particles inside it. Due to the complexity
the tangle the problem of determination of fractal charac
istics of the chaotic component~and of the resulting transpor
exponents! directly from the Hamiltonian remains largely a
open question. The scaling similarity of the tangle demo
strated in this paper elucidates its dependence on the
tem’s parameters and has important consequences for
ticle kinetics~such as lne-periodic variation of the transpor
characteristics!. The universality of the scaling, derived i
Sec. IV, extends the invariance to different systems and
lows to relate their statistical properties. The details of t
relation will be discussed elsewhere.
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